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STEADY HEAT TRANSFER TO A THIN INFINITE DISK WITH A CUT-OUT OPENING 

Yu. I. Babenko UDC 517,9:536.24.01 

A method is proposed which allows one to find the steady temperature gradient at 
the rim of a round opening cut out in an infinite nonuniform disk from the given 
temperature of the rim without a preliminary determination of the temperature 
field. 

It is required to find the quantity qR = 
the disk. 

A method was proposed earlier which allows one to find the change in the temperature 
gradient at the boundary of a semiinfinite region from the given change in the temperature of 
the boundary without a preliminary determination of the temperature field [i, 2]. In the 
present report the analogous problem is solved for the steady case. 

First let us consider the method in application to a well-studied problem. 

The steady cylindrically symmetrical temperature field in a uniform infinite disk with 
a round cut-out opening, cooled from the lateral surface in accordance with Newton's law, is 
described by the problem 

( d2dr" l d ) . - z - c +  ? r = o ;  R < ~ r < ~ ;  (1)  
, r d r  , 

T]r--n ~ TR; T]~=| = O; y : eons t>  O. 

( ~ T / 3 r ) r =  R, w h i c h  d e t e r m i n e s  t h e  h e a t  f l u x  t o  

The known solution has the form 

T = T~ K~ �9 K~(V?R) (2 )  

The proposed method of finding qR without a preliminary determination of the temperature 
field consists in the following. We represent Eq. (i) in the form of a product of two oper- 
ators, each of which contain only the first derivative with respect to r: 

] --IZ oo ! --rt 

- -  ? " b,~(r + ' ~  ? - a ,~(r  r - - - - O .  ( 3 )  
dr .=o n~o 

By a n a l o g y  w i t h  [1]  t h e  f u n c t i o n s  a n a n d  b n c a n  b e  d e t e r m i n e d  u s i n g  r e c u r r e n t  e q u a t i o n s  
if one "multiplies" the operator expressions in brackets and equates terms with equal powers 
of y_i/2 to the original operator (i). It turns out that 
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a2 = - -  1/8r2; as  

a 0 =  b o =  1; a ~ : - - b ~ =  1/2r; a,~=b., n > / 2 ;  

= l/8rS; a~ = -  25/128r4; a5 = 13/32r5; a6 : -  1073/1024re; a7 = 103/32r 7 . . . .  
(4) 

Let us consider the equation formed by the right-hand cofactor of Eq. (3): 

--~-r + ? a.(r) T = 0 .  (5) 
n = 0  

I t s  s o l u t i o n  w i l l  s i m u l t a n e o u s l y  be  s o l u t i o n s  o f  t h e  o r i g i n a l  e q u a t i o n  ( l ) .  By a n a l o g y  
with [i] one can assume that all solutions of (5) automatically satisfy the condition of 
finiteness as r § ~. Therefore, in place of the original problem one can consider the solu- 
tion of Eq. (5) with the condition TIr= R -- TR. 

The formal criterion by which we chose the right-hand cofactor in (3) rather than the 
left-hand consists in the following. For large enough y Eq. (5) changes into the following 
equation: 

which has a solution of the form exp (--r But the solution of the left-hand cofactor has 
the form exp (/~r), which is incompatible with the condition of finiteness as r + ~. 

By writing (5) with r = R we obtain the unknown temperature gradient in the form 

- - q ~ = ~ ?  ~ an(R), (6) 
n=0 

where an(R) are given by the expressions (4). 

By expanding the known solution (2) in a series by powers of y-~/2 using asymptotic 
representations of MacDonald functions, we can ascertain that Eqs. (2) and (6) are the same. 

One can show that the series (6) diverges for all finite y. Nevertheless, for large 
enough values of y it is asymptotic and suitable for calculations, which results from the 
following argument. 

Let us assume that in the series of (3) terms are calculated up to n = N _> 2. By multi- 
plying the finite series we obtain the following in place of the original equation (i): 

( ~ _~ 1 d y - -T -  aN--k--lai+k - -  
dr ~ r dr ? T*-t- dr k=0 

N--2 N,J-llV--3 9N--2"a~Iv] O. (7), 
--N / 2 2 . ~ ~ T* - -  a N--kaz+k - -  "~ a N-ka3+k- - . .  .'~ ~ 

k=O k=0 

which is satisfied by the approximate temperature T*. If the terms ax, ..., a N are small 
enough, then for large y the "contribution" to Eq. (I) is small and consequently T* is close 
to the exact solution T. For example, for N = 1 we obtain in place of (7) 

( d ~ r l d  )T* I T *  y ---- ----0, 
r dr 4r ~ 

from which we find 

T*=TR e x p [ V ? ( R - - r ) l ;  - - qR  = V ? +  2R ' 

which  g i v e s  two e x a c t  t e r m s  o f  t h e  e x p a n s i o n  (2) b~ powers  o f , y - ~ / 2 ,  w i t h  t h e  e r r o r  o f  t h e  
s o l u t i o n  b e i n g  d e t e r m i n e d  by t h e  e x p r e s s i o n  qR -- qR s 1 / 8 R 2 ~ / 2 "  

In  a p p l i c a t i o n  t o  t h e  p r o b l e m  u n d e r  c o n s i d e r a t i o n  t h e  s u g g e s t e d  p r o c e d u r e  g i v e s  no a d -  
v a n t a g e s  o v e r  t h e  known m e t h o d s .  However ,  i t  can be  a p p l i e d  d i r e c t l y  t o  p r o b l e m s  w i t h  v a r i -  
a b l e  c o e f f i c i e n t s ,  and i n  t h i s  we s e e  t h e  main  p u r p o s e  o f  t h e  p r e s e n t  r e p o r t .  
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We can complicate the problem discussed above by assuming that the thermal conductivity 
X(r, 9 ) of the disk depends in a known way on the coordinates: 

R . ~ r < o o ,  - - a < q o ~ a ,  V = c o n s t > O ,  (8) 

TI,=~ = T~ (9); TI~== = 0. 

It is required to find the radial temperature gradient qR(9 ) = (aT/ar)r=Rat the edge of the 

opening. 

We represent Eq. (8) in the form 

( V ~  Or ~r (9) 
n - ~ O  n : O  

Here Mo = Lo = i while M n and L n are as yet unknown linear operators which depend, as will 
be seen below, on r and ak/apk. Multiplying the operators in (9), we choose expressions with 
the same powers of y-i/a such that the original equation (8) is obtained. Then we obtain a 
system of recurrent equations for the determination of M n and Ln: 

- -  : l / - g  (L1 - -  M O  + ~ - .  a~-  = - -  ,-l- 
Or r --~Or ~ , 

71I~: " L I " M  ~ -0 J 

~o : 

~--1/2 : 

~--1/2 0 , _ _ :  L ~ - - M 2 = O  
Or 

- -  L:  - -  M ~ L ~ - -  M~ + I'rf. OLx _ 1 & a + ),._02__ 2 

Or r 2 0~ 09 r 2 09 ~ 
O 

7-x a--r-: L a - - M a = O  i 

_ 0 .2 [ �9 
La - -  M2LI - -  M1L2 - -  Ma + I = 0 

Or 

From this we find 

I/-Z 1 OZ 
L I =  - - - -  _ _  

2r ~ 2 ]/-~ Or 

3 Ok 1 02% 1 O~, a ~, 02 
L~-- - -  + - - . - - q  . . . . .  

8r a 8r Or 4 r~r~ 2r z 09. Otp 2r 2 a9 s 
V~- aL~ 

L3 = 2 Or ' 

(lo) 

. . . . . . . . . . . .  ~ . . . . . . . . . . . . .  

n - - 1  

2L~+1 = V-~ OL. 
Or E Ln_l_~Lz+u. 

k=O 

By writing the right-hand cofactor of Eq. (9) with r = R, as in the preceding example, 
we find the unknown gradient at the boundary of the region in the form of a series by powers 
of 7 -~/2 : 

l--n 

- - q e ( 9 )  : ~ ? L,~TR(~), (11)  
r ~ : O  

Oj 

w h e r e  L n a r e  d e t e r m i n e d  f r o m  ( 1 0 ) .  F o r  e x a m p l e ,  i f  X = (z + cos  9 ) r  t h e n  

o D] ' [ l  + sin q~ - ~ -  - -  (2 + cos qD) - -  -~- ? - i R - a / 2  (2 -k- cos (p)1!2 ( 2 4  

+ c ~ 1 7 6  O D ]  } ' + . .  T a .  
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The series in (ii) is not necessarily asymptotic. For example, if TR = i, % = r v, ~ = 
(4k + 2)/(2k + 3), and k is an integer, then qR = /~YKn(~YR)/Kn(~YR), where the index n = 
(2k + 1)/2. The MacDonald functions represent finite series by powers of u and the 
ratio of polynomials is expanded in an analogous series with a finite radius of convergence. 

NOTATION 

T, temperature; T K, temperature at rim of opening; T*, approximate value of temperature; 
qR, radial temperature gradient at edge of opening; qR*, approximate value of gradient; y, 
heat-transfer coefficient; r, 9, polar coordinates; R, radius of opening; an, bn, functions 
of radius; h, thermal conductivity; M n, L n, linear operators; Kn, MacDonald functions. 

lo 
2. 
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PHASE-TRANSITION KINETICS AND KINETIC EQUATIONS 

P. M. Kolesnikov and T. A. Karpova UDC 536.423 

Kinetic equations for gas-liquid droplet and liquid--gas bubbles systems are derived 
and studied by the characteristic and moment methods. 

In investigating the kinetics of phase transitions in multiphase media it is necessary 
to study formation of phase nuclei, together with their growth and decay. The kinetics of 
solid-phase nucleus formation in liquid condensation and gas-phase nucleus formation in boil- 
ing are described by the well-known equations of Vollmer, Becker and Deering, Frenkel' and 
Zel'dovich, Courtney, Probstein, Kantrowitz, et al. [i]. Further growth of these nuclei may 
be considered on the basis of growth or decay kinetics of unit nuclei for monodispersed media 
in the absence of nucleus interaction; however, for a large number of such nuclei this ap- 
proach must be replaced by a kinetic description. A number of studies have presented vari- 
ous kinetic equations for particle distributions over velocity and dimensions for the pro- 
cesses of vapor condensation, liquid or vapor crystallization [i, 2], and sublimation, boil- 
ing, and cavitation processes, but these studies usually consider distribution functions 
over size alone [5], or over velocity without consideration of size [6], or with considera- 
tion of size, but without distribution over velocity [i, 3]. 

We will present below a generalized kinetic equation for the particle distribution func- 
tion fi over time, coordinates, velocities, and particle size: 

f~ (t, x, y,  z, a, v, w, r). ( 1 )  

Change in the distribution functions will be described by kinetic equations which have 
the form 

For viscous liquid nuclei we may equate F i to the Stokes friction force ui = aui or to 
other well-known expressions, for example, 6 = a~u 2, etc. Further, we assume 
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